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A thin liquid film experiences additional intermolecular forces when the film thickness
h is less than roughly 100 nm. The effect of these intermolecular forces at the
continuum level is captured by the disjoining pressure Π . Since Π dominates at small
film thicknesses, it determines the stability and wettability of thin films. To leading
order, Π = Π (h) because thin films are generally uniform. This form, however, cannot
be applied to films that end at the substrate with non-zero contact angles. A recent ad
hoc derivation including the slope hx leads to Π = Π (h, hx), which allows non-zero
contact angles, but it permits a contact line to move without slip. This work derives
a new disjoining-pressure expression by minimizing the total energy of a drop on a
solid substrate. The minimization yields an equilibrium equation that relates Π to
an excess interaction energy E = E(h, hx). By considering a fluid wedge on a solid
substrate, E(h, hx) is found by pairwise summation of van der Waals potentials. This
gives in the small-slope limit

Π =
B

h3

(
α4 − h4

x + 2hh2
xhxx

)
,

where α is the contact angle and B is a material constant. The term containing the
curvature hxx is new; it prevents a contact line from moving without slip. Equilibrium
drop and meniscus profiles are calculated for both positive and negative disjoining
pressure. The evolution of a film step is solved by a finite-difference method with
the new disjoining pressure included; it is found that hxx = 0 at the contact line is
sufficient to specify the contact angle.

1. Introduction
A molecule in a bulk liquid is subject to intermolecular forces. A molecule in a

thin liquid film may experience additional intermolecular forces if the film thickness
is less than roughly 100 nm. The additional forces arise from the molecule’s proximity
to different materials or phases sandwiching the thin film. These forces can come from
various sources, such as electrostatic or dipole–dipole interactions or a combination
of the two (Israelachvili 1992). An uncharged and non-polar molecule has an
instantaneous dipole that can induce polarization on others to create a net attraction
between molecules. This gives rise to dispersion forces which usually are the main
contribution to the van der Waals force (Mahanty & Ninham 1976; Israelachvili
1992). Thin-film forces can be studied by pressing a bubble in liquid against a solid
surface. For some gas–liquid–solid systems a uniform thin film persists to separate the
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bubble from the solid. The film can sustain compression and its thickness decreases
with increasing pressure. By varying the bubble pressure, this repulsive or disjoining
pressure Π in the film can be measured as a function of film thickness h (Derjaguin
et al. 1978). Similar measurements can be made on a freely suspended liquid film
supported by a solid frame (Ivanov 1988). Nowadays, intermolecular forces between
solid–solid surfaces are routinely studied by the atomic force microscope (Israelachvili
1992; Lee & Sigmund 2002). Owing to the historical development, thin-film forces
per unit area are commonly referred to as disjoining pressure.

Disjoining pressure dominates at small film thicknesses and therefore governs the
stability and wettability of thin films. For example, the exposed part of the eyeball is
protected by a tear film, which is deposited by the rising meniscus of the upper lid
during a blink (Wong, Fatt & Radke 1996). After deposition, a tear film thins rapidly
near the lid meniscus and may break before the next blink if the disjoining pressure
is destabilizing. Repeated rupture of the tear film may cause epithelium desiccation
and corneal ulceration.

In the lung, airways are lined with a liquid film. Normal lungs produce surfactants
to reduce the surface tension of the liquid film. Insufficient surfactants can lead to
closure of small airways which can cause respiratory difficulties. An effective treatment
for surfactant deficiency is to inhale surfactant-laden aerosols. As a surfactant droplet
spreads on a liquid film, a shock forms followed by a thin region, which may break
in a finite time if the disjoining pressure is destabilizing (Jensen & Grotberg 1992).

Thin-film forces also control the wettability of solid surfaces. A polymer film on a
silicon wafer grafted with a bimodal polymer brush maintains a uniform thickness
if the outside medium is air. However, when the polymer film is covered by water,
it breaks into droplets, which re-spread to form a continuous film when water is
removed (Reiter et al. 1999). Changing the outside medium from air to water alters
the sign of the disjoining pressure, switching it from stabilizing to destabilizing.

Disjoining pressure may also be changed by irreversible adsorption. A water-wet
surface covered by a water film has a stabilizing disjoining pressure. However, if the
non-wetting phase is asphaltic oil with high-molecular-weight aggregates, and if the
water film is pressed very thin, then the asphaltene aggregates may adsorb irreversibly
onto the solid surface and change it into oil-wet. On an oil-wet surface, an oil film is
stable whereas a water film is not. Thus, the disjoining pressure has been altered. This
irreversible alteration can explain the geological development of mixed wettability in
oil-reservoir rock (Kovscek, Wong & Radke 1993). A drainage model based on the
irreversible alteration reproduces a range of phenomena associated with oil recovery
from mixed-wet porous media.

Given the importance of disjoining pressure in controlling the stability and
wettability of thin films, it is critical that an accurate model of disjoining pressure be
developed. Since thin films are generally uniform, disjoining pressure can be taken
to leading order as a function of film thickness only: Π = Π (h). For van der Waals
forces, this leads to Π = A/6πh3, where A is the Hamaker constant (Israelachvili
1992). This expression has been applied to simulate equilibrium profiles (Deryagin,
Starov & Churaev 1976; Renk, Wayner & Homsy 1978; Wong, Morris & Radke
1992a) and the evolution of non-uniform films (Oron, Davis & Bankoff 1997 and
references therein). It has even been extended to model film breakup (Zhang &
Lister 1999; Vaynblat, Lister & Witelski 2001) and spreading (Pismen, Rubinstein
& Bazhlekov 2000; Davis & Troian 2003) in which film thickness h → 0. Since this
disjoining pressure becomes unbounded as h → 0, its validity in modelling films that
end at the substrate has been questioned.
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Hocking (1993) attempted to rectify this deficiency by deriving a disjoining pressure
that depends not only on the film thickness, but also on the film slope. His derivation
is based on the work of Miller & Ruckenstein (1974). They considered a liquid wedge
on a solid substrate and calculated intermolecular potential Φ∗ at a point on the
liquid–vapour interface assuming van der Waals interactions between liquid–liquid
and liquid–solid molecules and neglecting vapour contribution. They found that Φ∗

is constant along the liquid–vapour interface at a particular wedge angle ψ . The
liquid wedge is then taken to be at equilibrium with the contact angle ψ . Hocking
(1993) took Π =Φ∗, and allowed the slope of the wedge hx to be different from the
equilibrium value. In the small-slope limit, he obtained

Π = −B∗

h3

(
ψ4 − h4

x

)
, (1.1)

where B∗ and ψ depend on the van der Waals potentials and number densities.
There are two problems with this derivation. First, Φ∗ being constant at the interface
does not imply equilibrium because Φ∗ still varies inside the liquid wedge. (A proper
equilibrium condition should be that Φ∗ is constant everywhere.) Second, taking
Π = Φ∗ is unjustified. Recently, Indeikina & Chang (1999) also derived a disjoining
pressure that depends on the slope. They likewise summed van der Waals potentials,
but the liquid domain has a curved surface. Their derivation again lacks a rigorous
equilibrium condition. As a result, the relation between intermolecular potential and
disjoining pressure is similarly unjustified.

In this work, equilibrium conditions are derived by minimizing the total energy of a
drop on a substrate that includes an excess energy E due to intermolecular interactions
(§ 2). This potential energy E is assumed to depend on both film height h and film slope
hx . The minimization yields the augmented Young–Laplace equation, in which

Π = −∂E

∂h
+

d

dx

(
∂E

∂hx

)
, (1.2)

where x is a coordinate along the solid surface. To find E = E(h, hx), we again
consider a liquid wedge on a substrate and calculate the intermolecular potential Φ

at a point in the liquid (§ 3). We argue that

E =

∫ h

0

(Φ − Φ∞) dy, (1.3)

where Φ∞ is the bulk value of Φ far from the solid substrate, and y is a coordinate
normal to the solid surface. This gives in the small-slope limit,

Π = − B

h3

(
α4 − h4

x + 2hh2
xhxx

)
, (1.4)

where α is the contact angle and B is a material constant. This equation differs from
Hocking’s in that a higher-order term appears and the contact angle α is no longer
the wedge angle.

When a liquid film ends at a substrate, an infinite-force singularity results at the
contact line if the film is to be moved along the substrate (Dussan V. & Davis 1974).
The singularity arises because a fluid particle has to turn through a finite angle at the
contact line within an infinitesimal distance (Dussan V. 1979). Molecular-dynamics
simulations have shown that liquid molecules slip on the solid surface to relieve
the infinite force (Koplik, Banavar & Willemsen 1989; Thompson & Robbins 1989;
Barrat & Bocquet 1999). Different slip models have been proposed (Oron et al. 1997;
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Figure 1. A two-dimensional drop on a solid substrate. The drop is in thermodynamic
equilibrium and is symmetric about the y-axis. The drop width is 2x0 and the drop height is
denoted by h. The dashed line represents a perturbed drop shape.

Shikhmurzaev 1997). Hocking’s disjoining pressure allows a contact line to move
without slip, in disagreement with the simulation results. Our disjoining pressure
contains an extra higher-order term, which prevents a contact line from moving
without slip.

The new disjoining pressure is used to solve equilibrium drop and meniscus shapes
in § 4. We recover solutions for Π = A/6πh3 when the liquid film does not end at
the substrate. In addition, the slope-dependent disjoining pressure allows a new class
of shapes including a planar wedge, a curved wedge and a drop. The evolution
of a semi-infinite uniform film is simulated numerically in § 5. We show that the
contact line cannot move without slip when the new disjoining pressure is included
in the evolution equation. The model problem also illustrates the proper boundary
conditions at the contact line. The linear stability of uniform films is studied in § 6.
Further discussion is provided in § 7 and this work is concluded in § 8.

2. Minimization of the total energy
Consider a two-dimensional liquid drop on a smooth solid surface and in thermo-

dynamic equilibrium with its own vapour, as illustrated in figure 1. This system has
surface energies and an excess interaction energy E per unit substrate area due to
thin-film forces. At equilibrium, the total energy of the system is at a minimum and
its variation is zero:

δ

∫ x0

0

[
σ
(
1 + h2

x

)1/2
+ σf s − σsg + E + pch

]
dx = 0, (2.1)

where δ represents the variation of a function (Courant & Hilbert 1953), h is the film
height, x is a horizontal coordinate with origin at the centre of the drop, hx = dh/dx,
σ is the liquid–vapour surface tension, σf s and σsg are the liquid–solid and solid–
vapour surface tensions respectively, and x0 is the half-width of the drop. Owing to
symmetry, only half of the drop is considered. The first term in the integral represents
the surface energy of the liquid–vapour interface. The second and third represent the
net surface energy at the liquid–solid interface; if the liquid–solid interface lengthens,
then the system gains liquid–solid surface energy but loses solid–vapour surface
energy. Conservation of mass is imposed by a Lagrange multiplier pc. The excess
interaction energy E is a function of film thickness and film slope: E = E(h, hx).
Equation (2.1) can be derived rigorously by use of thermodynamics (Yeh, Newman &
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Radke 1999). Expansion of (2.1) gives∫ x0

0

(
∂E

∂h
+ pc

)
(δh) dx +

∫ x0

0

[
σhx(

1 + h2
x

)1/2
+

∂E

∂hx

]
(δhx) dx

+
[
σ
(
1 + h2

x

)1/2
+ σf s − σsg + E

]
x0

δx0 = 0, (2.2)

where the drop-edge position is allowed to vary (by δx0). Since δhx = d(δh)/dx, the
second integral is expanded via integration by parts:∫ x0

0

[
∂E

∂h
+ pc − σhxx(

1 +h2
x

)3/2
− d

dx

(
∂E

∂hx

)]
δh dx −

[
σhx(

1 + h2
x

)1/2
+

∂E

∂hx

]
δh

∣∣∣∣∣
x=0

+

[
σ(

1 + h2
x

)1/2
+ σf s − σsg + E − hx

∂E

∂hx

]
x=x0

δx0 = 0, (2.3)

where δh|x=x0
= −hx δx0|x=x0

. Since δh is arbitrary, the above equation yields three
conditions that govern the equilibrium shape of a drop on a solid surface.

The first coefficient leads to the augmented Young–Laplace equation in two
dimensions:

σhxx(
1 + h2

x

)3/2
− ∂E

∂h
+

d

dx

(
∂E

∂hx

)
= pc. (2.4)

By comparing with the usual augmented Young–Laplace equation (Wong et al. 1992b;
Yeh et al. 1999), a disjoining pressure Π can be defined as

Π = −∂E

∂h
+

d

dx

(
∂E

∂hx

)
, (2.5)

and the Lagrange multiplier pc is recognized as the difference between vapour pressure
pg and liquid pressure pf :

pc = pg − pf . (2.6)

The second and third terms in (2.3) serve as boundary conditions for the augmented
Young–Laplace equation. At x = 0,

σhx(
1 + h2

x

)1/2
+

∂E

∂hx

= 0. (2.7)

At x = x0,
σ(

1 + h2
x

)1/2
+ σf s − σsg + E − hx

∂E

∂hx

= 0. (2.8)

At this stage of the derivation, the slope hx need not be small. The above equations
reduce to that of Yeh et al. (1999) if E = E(h) only. To complete the derivation, it
remains to find an expression for the excess interaction energy E.

3. A disjoining pressure for non-zero contact angles
To derive an expression for E = E(h, hx), we consider a liquid wedge on a solid

substrate as shown in figure 2. The liquid wedge is in equilibrium with its vapour. A
liquid molecule M interacts with another molecule N in solid (s), liquid (f ), or vapor
(g) through the van der Waals potential,

φf s =
−βf s

MN6
, φff =

−βff

MN6
, φfg =

−βfg

MN6
. (3.1)
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Figure 2. A liquid wedge on a solid substrate in equilibrium with its vapour. Cartesian
coordinates (x, y, z) are defined at the tip of the wedge with z pointing out of the paper. An
arbitrary point (or molecule) N in the domain can also be located by cylindrical coordinates
(r, θ, z). A point (or molecule) M in the liquid has coordinates (R, γ, 0) and is at a distance v1

from the solid surface and v2 from the wedge surface. The wedge angle is ψ .

The distance between M and N is denoted by MN , and βf s , βff , and βfg are the
strengths of the van der Waals potentials. Following the usual practice, a cutoff
distance is applied to the potential φff to avoid infinite self-interactions. By summing
the potential between M and other solid, liquid, and vapour molecules, we find the
total intermolecular potential per unit volume at point M as (Appendix A)

Φ =
πn2

f βff

6

[
a1 (1 − ρ) + ρ − λ

v3
1

+
a2(1 − ρ)

v3
2

]
, (3.2a)

λ =
nsβf s

nf βff

, ρ =
ngβfg

nf βff

, v1 = R sin γ, v2 = R sin(ψ − γ ), (3.2b–e)

a1 = 1
2

+ 3
4
cos γ − 1

4
cos3 γ, a2 = 1

2
+ 3

4
cos(ψ − γ ) − 1

4
cos3(ψ − γ ), (3.2f, g)

where ns , nf , and ng are the number densities of the solid, liquid, and vapour
molecules, v1 is the height of point M from the solid surface, and v2 is the distance
between M and the wedge surface (figure 2). The wedge angle ψ will later yield the
wedge slope hx , and R and γ define the position of M (figure 2). The expression
for Φ in (3.2a) holds for ψ < 90◦. It can be reduced to the form used by Hocking
(1993) when the vapour component is neglected (ρ = 0) and when M lies at the
liquid–vapour interface.

The potential Φ is related to E in two steps. First, the bulk component Φ∞ must be
subtracted from Φ because Φ accounts for all intermolecular interactions including
bulk and thin-film components, whereas E is an excess interaction energy due only to
thin-film forces. The bulk component is the value of Φ far from the solid substrate,
i.e. as v1 tends to infinity but keeping v2 fixed (figure 2):

Φ∞ =
πn2

f βff (1 − ρ)

6v3
2

. (3.3)

In the second step, we note that Φ − Φ∞ is energy per unit volume and varies with
(x, y), whereas E is energy per unit substrate area and depends only on x (figure 2).
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Thus, we take

E =

∫ h

D

(Φ − Φ∞) dy. (3.4)

A cut-off distance D has been imposed near the substrate to avoid infinite self-
interactions (Appendix B). The integral is evaluated and in the limit D/h → 0
becomes

E = −
πn2

f βff

4h2

{
(1 − λ)

3
+

(1 − ρ)h2
x

4

[
1 −

(
1 + h2

x

)−1/2
]}

. (3.5)

This expression holds for finite slopes. However, in the energy minimization, we have
assumed E = E(h, hx) and have neglected the dependence on curvature. This is valid
if hx � 1, which implies hhxx � hx , i.e. the non-dimensionalized curvature is much
smaller than the slope. Furthermore, most applications of disjoining pressure involve
thin films, which are relatively flat. Thus, we take the limit hx → 0 and get

E = −
πn2

f βff (1 − ρ)

32h2

[
8

3

(
1 − λ

1 − ρ

)
+ h4

x

]
. (3.6)

This excess energy E holds for a liquid wedge with constant slope hx . However, the
liquid drop in figure 1 has variable slopes. Application of E to the drop is therefore
an approximation that becomes increasingly accurate as the drop edge is approached.
Since the edge is where thin-film forces are important, we deem this approximation
acceptable.

Following the derivation in § 2, a disjoining pressure is found as

Π = −∂E

∂h
+

d

dx

(
∂E

∂hx

)
= − B

h3

(
α4 − h4

x + 2hh2
xhxx

)
, (3.7a)

B =
3πn2

f βff (1 − ρ)

16
, α =

[
8(1 − λ)

9(1 − ρ)

]1/4

. (3.7b, c)

If a liquid film is flat, hx = hxx = 0, and (3.7a) becomes

Π = −Bα4

h3
, (3.8)

which recovers the usual h−3 dependence of disjoining pressure. The negative sign
indicates that Π in (3.8) is attractive. This follows from the long-range attractive
intermolecular potential used in deriving E. However, disjoining pressure can be
positive or negative (Israelachvili 1992). To explore all possible applications, we study
both positive and negative disjoining pressure. Thus, (3.7a) is written

Π = ± B

h3

(
α4 − h4

x + 2hh2
xhxx

)
(3.9)

with B > 0 and the positive (negative) sign representing a positive (negative) disjoining
pressure.

The new disjoining pressure allows a liquid film to end at a solid substrate with
contact angle α. As the film height h → 0, Π can remain bounded if hx → α and
hhxx → 0 faster than or at the same rate as h3 → 0. As shown in the next section, this
is realized if the interface is very flat near the contact line. Since the final expression
for E assumes hx � 1, the contact angle α � 1.

The new disjoining pressure differs from Hocking’s. Our expression contains a
higher derivative hxx that arises from assuming E = E(h, hx) instead of just E = E(h).
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Thus, although we are aiming to include only the effect of the slope hx , a curvature
term appears and cannot be avoided. This curvature term plays a decisive role in
preventing a contact line from moving without slip, as detailed in § 5.

4. Equilibrium film profiles
The augmented Young–Laplace equation in two dimensions follows from (2.4):

σhxx ± B

h3

(
α4 − h4

x + 2hh2
xhxx

)
= pc. (4.1)

This equation holds for small slopes. The pressure difference pc =pg − pf between
vapour pressure pg and liquid pressure pf can be positive or negative depending
on the application. Equation (4.1) states that the capillary pressure σhxx and the
disjoining pressure must sum to a constant. Away from the contact line, the capillary
pressure dominates. Near the contact line as h → 0, (4.1) demands

|hx | → α, hxx → 0, (4.2a, b)

for Π to be well-behaved. Thus, the capillary pressure vanishes at the contact line,
and the pressure difference is balanced solely by the disjoining pressure.

Minimization of the total energy leaves two boundary conditions for the drop
shape: one at the symmetry plane x =0 and the other at the contact line x = x0. Both
(2.7) and (2.8) contain ∂E/∂hx(= ±2Bh3

x/3h2). Equation (2.7) gives, at x =0,

hx = 0, (4.3a)

which is simply the symmetry condition. As x → x0,

E − hx

∂E

∂hx

= ±
B

(
α4 − h4

x

)
2h2

→ 0, (4.3b)

if (4.2a, b) hold and in addition, as h → 0,

hxxx → 0. (4.2c)

Consequently, (2.8) recovers the usual force balance in the horizontal direction at
x = x0:

σ(
1 + h2

x

)1/2
+ σf s − σsg = 0. (4.4)

This is Young’s equation, which can determine the contact angle α = hx(x0) � 1 if σ ,
σf s , and σsg are specified. Hence, α is assumed known for the rest of this paper.

The augmented Young–Laplace equation (4.1) is derived for a drop on a substrate.
However, once derived, it may be applied to other situations. Here, we attempt to
find all admissible solutions of (4.1). The equation can be made dimensionless by a
film height h0 (unspecified yet):

H =
h

h0

, X =
αx

h0

, (4.5a, b)

HXX ± ε

(
1 − H 4

X + 2HH 2
XHXX

H 3

)
= C, (4.6)

ε =
Bα2

σh2
0

, (4.7)

C =
pch0

σα2
, (4.8)
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where ε measures the ratio of disjoining to capillary pressure, which is small in most
applications, and C is the non-dimensional pressure difference. This equation can be
integrated once to give

H 2
X =

±1

2ε
(−H 2 +

√
H 4 ± 8εCH 3 ± 4KεH 2 + 4ε2), (4.9)

where K is an integration constant. Although the square root may also take a negative
sign, only the positive sign yields physical solutions. If the liquid film ends at the
substrate, (4.9) gives that, as H → 0,

H 2
X → ±1. (4.10)

Thus, only the positive disjoining pressure is admissible if a film ends at the substrate.
Furthermore, as H → 0, the only value of K in (4.9) that allows (1 − H 4

X)/H 3 in (4.6)
to be bounded is

K = 1. (4.11)

The dimensionless pressure difference C can be zero, negative, or positive depending
on the application. These three cases are considered.

4.1. Equilibrium profiles for C = 0

If a liquid film ends at a substrate, then K = 1 in (4.9) and the disjoining pressure
must be positive. Thus, (4.9) reduces to

H 2
X = 1, (4.12)

indicating that the film is a wedge with slope ±1. This wedge solution holds for
arbitrary ε. Since the derivation of Φ uses a wedge film, recovery of the wedge
solution suggests self-consistency.

If a liquid film does not end at the substrate, then it must have at least one
symmetry plane because (4.6) is invariant in changing X to −X. (The uniform-film
solution is excluded by (4.6).) The film height h0 at the symmetry plane provides a
length scale: at X = 0, H = 1, and HX = 0. This forces K = −(±ε) in (4.9). However,
K must be positive since in the limit H → ∞, (4.9) gives

H 2
X → K. (4.13)

Thus, only the negative disjoining pressure is acceptable and the symmetry condition
yields

K = ε. (4.14)

For ε � 1, the film is mildly inclined because HX → ε1/2 as H → ∞. The film profiles
can be normalized by defining

ζ = ε1/2X. (4.15)

Equation (4.13) gives that as H → ∞,

Hζ → 1. (4.16)

Equation (4.6) with the negative disjoining pressure becomes

Hζζ −
(

1 − ε2H 4
ζ + 2ε2HH 2

ζ Hζζ

H 3

)
= 0. (4.17)
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Figure 3. Symmetric valley film profiles for C = 0 and various ε. The asymptotic solution
holds in the limit ε → 0 and is listed in (4.18). The film height has been non-dimensionalized
by the minimum height h0, and X = αx/h0. Note that the horizontal axis is actually ε1/2X to
normalize the film profiles.

This equation is solved numerically by a fourth-order Runge–Kutta method, and the
computed profiles are plotted in figure 3 for various ε.

If ε = 0 in (4.17), the disjoining pressure reduces to the form that depends only
on H . Hence, when the film does not end at the substrate, the slope-dependent terms
have negligible O(ε2) contribution to Π . To discern their effects on the film profile,
an asymptotic solution is sought in the limit ε → 0 (Appendix C):

H (ζ ) = H0(ζ ) + ε2H1(ζ ) + · · · , (4.18a)

H0 = (ζ 2 + 1)1/2, (4.18b)

H1 =
ζ

4(ζ 2 + 1)3/2
[(ζ 2 + 1) tan−1(ζ ) − ζ ]. (4.18c)

As ζ → 0, H1 → ζ 4/6. Thus, the slope-dependent terms have little effect on the
minimum film profile. As ζ → ∞, H1 → π/8 − 1/2ζ , so that the slope-dependent terms
only increase the film height by a constant, but they have no effect on the far-field
slope. This asymptotic solution is also plotted in figure 3. It agrees with the numerical
results, even for ε = 0.5.

4.2. Equilibrium profiles for C < 0

If C < 0, the liquid pressure exceeds the vapour pressure, and two equilibrium solutions
are found: a drop and a uniform film. For a drop, K = 1 and the disjoining pressure
is positive because the drop surface contacts the substrate. At the drop centre, h = h0

or H = 1 and symmetry demands HX = 0. Thus, (4.9) gives

C = −1 + ε

2
. (4.19)
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Figure 4. Equilibrium drop profiles for various ε. The dimensionless pressure jump is
C = −(1 + ε)/2. The profiles are non-dimensionalized such that the drop height is unity
at the centre and the slope is unity at the edge. The asymptotic solution holds in the limit
ε → 0 and is listed in Appendix D.

Equation (4.6) is solved using a fourth-order Runge–Kutta method. The integration
starts at X = 0 with H = 1 and HX = 0; it stops when H becomes zero. Computed
drop profiles are plotted in figure 4 for various ε. If ε = 0, the parabolic drop shape is
recovered: H = −X2/4 + 1. The contact line position is X0 = 2 and the volume of half
a drop is V = 4/3. As ε increases, the liquid drop becomes more pointed (figure 4) and
both X0 and V decrease (figure 5). The profiles in figure 4 are non-dimensionalized
so that the drop height is unity at the centre and the slope is unity at the edge. In
figure 5, the width is made dimensionless by h0/α and the volume by h2

0/α.
The limit ε → 0 is singular and a boundary layer exists near the contact line.

The singularity arises because disjoining pressure dominates as H → 0 and its effect
on the film profile is not uniform. The length scales in the inner region are found
by balancing the dominant capillary-pressure and disjoining-pressure terms in (4.6):
δH ∼ δX ∼ ε1/2. Consequently, the drop profile is expanded in an asymptotic series of
ε1/2:

H = H0 + ε1/2H1 + (ε ln ε)H2 + εH3 + · · · , (4.20a)

C = C0 + ε1/2C1 + (ε ln ε)C2 + εC3 + · · · , (4.20b)

X0 = X00 + ε1/2X01 + (ε ln ε)X02 + εX03 + · · · . (4.20c)

The ε ln ε scale is suggested by the inner solution. In the inner region, we define

η =
H

ε1/2
, ξ =

X − X0

ε1/2
. (4.21a, b)

The inner film height is similarly expanded:

η = η0 + ε1/2η1 + εη2 + · · · . (4.22)
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Figure 5. Half-width X0 and half-volume V versus ε for the drops in figure 4. The width is
made dimensionless by h0/α and the volume by h2

0/α. The asymptotic solutions hold in the
limit ε → 0 and are listed in (4.24) and (4.27).

Substitution into the governing equation, solving the outer and inner expansions, and
matching yields (Appendix D)

C = − 1
2
(1 + ε), (4.23)

X0 = 2 + 1
2
(ε ln ε) −

(
1 + 3

2
ln 2

)
ε, (4.24)

H1 = H2 = 0, (4.25)

and a composite solution for the film profile:

HC = H + ε1/2η − lim
ξ→−∞

ε1/2η. (4.26)

The half-drop volume is calculated as

V =

∫ X0

0

HcdX = 4
3

− 10
3
ε. (4.27)

The asymptotic expansion of C recovers the exact solution in (4.19). The composite
film profile is plotted in figure 4 for ε = 0.01 and compares well with the numerical
results. The asymptotic expansions of X0 and V are graphed in figure 5 and agree
with the computed values as ε → 0. These comparisons validate both the numerical
and asymptotic solutions.

Equation (4.6) also admits a uniform-film solution with H = 1 (i.e. h = h0), HX = 0,
and HXX = 0. Thus, (4.6) shows that the disjoining pressure must be negative, and

C = −ε. (4.28)

The conjoining pressure pulls the film together to balance the pressure difference
across the film surface. The dimensional film thickness h0 = (−Bα4/pc)

1/3 follows from
(4.28).
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4.3. Equilibrium profiles for C > 0

If C > 0, the vapour pressure is higher than the liquid pressure, and three equilibrium
solutions are found: a uniform film, a uniform film that grows to a constant-curvature
surface (figure 6), and a film wedge that grows to a constant-curvature surface
(figure 7).

A uniform film has its thickness as a natural length scale: H = 1, HX = 0, HXX = 0.
Thus (4.6) gives

C = ε. (4.29)

Since C > 0, only the positive disjoining pressure is acceptable. The above equation
yields the dimensional film thickness h0 = (Bα4/pc)

1/3.
A uniform film can grow in the X-direction to approach a constant-curvature sur-

face. The uniform thickness is perturbed as

H (X) = 1 + δ(X). (4.30)

Substitution into (4.6) and keeping only the linear terms of δ yields

δXX − 3εδ = 0. (4.31)

Only the positive disjoining pressure is acceptable, as demanded by the uniform film.
Equation (4.31) admits two solutions: one growing and one decaying exponentially
in X. The growing solution is of interest here:

δ = am exp
(√

3εX
)
. (4.32)

The amplitude am needs to be small but its value has no physical significance; different
values of am yield the same profile except for a shift in the origin of X. As a film
grows, H 	 1, and (4.9) shows H 2

X → 2CH or

HXX → C. (4.33)

Hence, the curvature becomes constant away from the wall. Since C = ε for a uniform
film, the curvature is small for ε � 1. Equations (4.31) and (4.32) suggest X ∼ ε−1/2

as ε → 0. Thus, the film profiles are normalized in terms of the variable ζ = ε1/2X,
and (4.6) becomes

Hζζ +

(
1 − ε2H 4

ζ + 2ε2HH 2
ζ Hζζ

H 3

)
= 1. (4.34)

This equation is solved by a fourth-order Runge–Kutta method. At ζ = 0, (4.32)
provides the starting conditions: H = 1 + δ and Hζ = δζ with am = 0.001. Integrated
film profiles are plotted as a function of ζ in figure 6 for various ε. They are insensitive
to ε, because the slope-dependent terms in (4.34) are of order ε2.

If ε = 0, (4.34) reduces to

Hζζ +
1

H 3
= 1. (4.35)

This equation has been studied by Deryagin et al. (1976) and Renk et al. (1978). By
imposing the condition Hζ = 0 at H = 1, they found

√
2H + 1 +

1√
3

ln

(√
2H + 1 −

√
3√

2H + 1 +
√

3

)
= ζ + K1, (4.36)
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Figure 6. A uniform film growing to a parabolic film for various ε. The uniform section
demands C = ε. Note the normalized horizontal axis. The analytic solution holds for ε = 0
and is listed in (4.36).

where K1 is an integration constant and is determined by the film height at ζ = 0.
This solution is also plotted in figure 6 and compares well with the numerically
integrated profile for ε = 0.01.

A film in contact with the substrate can also grow to approach a constant-
curvature surface. At the contact line X = 0, the film grows initially with unit slope
until HXX → C as H → ∞. Since there is no imposed length scale, we can take C = 1
(or h0 = σα2/pc). Thus, ε is the only remaining parameter and (4.6) with the positive
disjoining pressure becomes

HXX + ε

(
1 − H 4

X + 2HH 2
XHXX

H 3

)
= 1. (4.37)

Near the contact line as X → 0, the above equation together with (4.2a–c) specifies

H → X +
X4

8ε
+ · · · . (4.38)

This is used to start the integration of (4.37) at X = 0.01. Film profiles calculated by
a fourth-order Runge–Kutta method are shown in figure 7 for various ε.

An asymptotic solution is obtained in the limit ε → 0 to compare with the integrated
film profiles. The film height is expanded in a series of ε1/2 (Appendix E):

H = H0 + ε1/2H1 + (ε ln ε)H2 + εH3 + · · · . (4.39)

The ε ln ε scale is needed for matching to the inner solution. In the inner region near
the contact line, a set of variables is defined and expanded:

η =
H

ε1/2
, ξ =

X

ε1/2
, (4.40a, b)

η = η0 + ε1/2η1 + εη2 + · · · . (4.41)
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Figure 7. A wedge film growing to a parabolic film with curvature C = 1. The asymptotic
solution holds in the limit ε → 0 and the data are calculated using (4.42) for ε = 0.01.

The inner and outer asymptotic expansions are solved and matched to yield a
composite solution for the film profile (Appendix E):

HC = H + ε1/2η − lim
ξ→∞

ε1/2η. (4.42)

This is plotted in figure 7 for ε = 0.01. It agrees with the numerically integrated profile.

5. Evolution of a film step
The new disjoining pressure prevents a contact line from moving without slip. This

is demonstrated by a semi-infinite liquid film on a solid surface. Since the film is thin,
gravity is taken as negligible. The augmented Young–Laplace equation in (4.1) gives
the liquid pressure as

pf = pg − σhxx − ±B

h3

(
α4 − h4

x + 2hh2
xhxx

)
. (5.1)

The film height h = h(t, x) obeys (Oron et al. 1997)

∂h

∂t
− 1

3µ

∂

∂x

(
h3 ∂pf

∂x

)
= 0, (5.2)

where t is time and µ is liquid viscosity. This equation holds for hx � 1. A set of
dimensionless variables can be defined based on the height h0 of the uniform film:

H =
h

h0

, X =
αx

h0

, τ =
tσα4

µh0

, (5.3a–c)

∂H

∂τ
+

1

3

∂

∂X

{
H 3 ∂

∂X

[
HXX ± ε

H 3

(
1 − H 4

X + 2HH 2
XHXX

)]}
= 0, (5.4)

where ε = Bα2/σh2
0. Only the positive disjoining pressure is considered since the film

surface contacts the substrate. Initially, at τ = 0, the film consists of a wedge near
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Figure 8. Evolving profiles of a thin film with fixed contact line at different times for ε = 0.1.

the contact line connected smoothly to a uniform film by a circular arc (figure 8). For
τ > 0, the film profile at the contact line must obey three boundary conditions: as
X → 0, H → 0, HX → 1, and HXX → 0. These conditions are imposed by (5.4) for a
well-behaved solution near the contact line. Thus, as H → 0, (5.4) gives

Hτ → 8εH 2
XH 2

XX. (5.5)

Thus, Hτ → 0 as H → 0 and the contact line cannot move, because Hτ at the contact
line is also the contact-line velocity for a film edge of unity slope. This differs from
Hocking’s results (see Discussion, § 7). Equation (5.4) is solved numerically by the
Crank–Nicolson method with spatial derivatives replaced by second-order central
differences. At each time step, the spatial derivatives are grouped in a descending
order. In each group, only the highest-order derivative is evaluated at the current
time; all other derivatives are found using the film height at the previous time step.
This way of treating the nonlinearity yields a robust scheme. Boundary conditions
at the fixed contact line X = 0 are H = 0 and HXX =0. Although the slope is not
specified, the evolution equation forces HX ≈ 1 near the contact line. At the other end
of the computational domain (X = X∞), the film is uniform: HX =0 and HXXX =0.
Film profiles calculated with X∞ = 10, �X = 0.01, and �τ = 0.001 are plotted in figure
8 for ε = 0.1. By varying X∞, �X, and �τ , the results are found to be accurate to
four significant figures.

6. Stability of uniform films
A uniform film with normalized height H = 1 satisfies (5.4). Its stability is studied

by adding a small perturbation:

H (τ, X) = 1 + δ(τ, X). (6.1)
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Since |δ| � 1, (5.4) can be expanded in δ. The leading-order equation is linear in δ

and amenable to a normal-mode analysis:

δ(τ, X) = eωτf (X), (6.2)

d4f

dX4
− (±3ε)

d2f

dX2
+ 3ωf = 0. (6.3)

The uniform-film solution holds for both positive and negative disjoining pressure.
The eigenfunction is sinusoidal with wavenumber k:

f = eikX, (6.4)

ω = − 1
3
k2(k2 ± 3ε). (6.5)

Thus, the uniform film is stable if the disjoining pressure is positive. If the disjoining
pressure is negative, the uniform film is stable if k � (3ε)1/2, and unstable otherwise.
These results are the same as those for Π = ±A/6πh3 (Ruckenstein & Jain 1974)
because the slope and curvature terms in the new disjoining pressure are nonlinear in
δ and they do not appear in (6.3).

The instability can be understood by a physical argument. If the film surface is
perturbed by a sinusoidal wave, and if the disjoining pressure is negative, then the
wave valleys would be closer to the substrate and would experience larger attractive
forces. This would pull the valleys lower. Thus, the uniform film is unstable. This
argument also applies to non-uniform films and suggests that the other equilibrium
film profile in § 4 with the negative disjoining pressure is unstable.

7. Discussion
If Π = A/6πh3, a liquid film on a solid substrate is not permitted to end at the

substrate. A thin adsorbed film must cover the solid surface, but a meniscus can exist
by attaching smoothly to the adsorbed film (Deryagin et al. 1976; Renk et al. 1978;
Wong et al. 1992a). The new disjoining pressure Π = Π (h, hx, hxx) does allow direct
contact between the film surface and the substrate, and Young’s equation is satisfied
at the contact line (§ 4). The new disjoining pressure admits a whole class of contact
film profiles (§ 4). In addition, it also recovers the static solutions with an adsorbed
film. For those solutions, the terms containing hx and hxx have a negligible O(ε2)
effect on the film profile (§ 4). Thus, the new disjoining pressure is not a replacement
but an extension of the previous expression.

Young’s equation is obeyed at the contact line in the presence of disjoining
pressure. This is the first time that Young’s relation has been derived together
with disjoining pressure. (Merchant & Keller (1992) verified Young’s equation by
summing intermolecular potentials, but they did not consider disjoining pressure.) In
the work of Yeh et al. (1999), E = E(h) only and Young’s equation is not recovered
because the extra term (E) in (2.8) is singular as h → 0 and cannot be removed.
This is acceptable in their formulation since the liquid film is not allowed to end at
the substrate due to the singularity in E(h) and there is no contact line. Hocking’s
(1993) and Indeikina & Chang’s (1999) derivations of Π lack a rigorous equilibrium
condition, and therefore (2.8) does not appear in their papers. In this work, equilibrium
conditions arise naturally from energy minimization, resulting in (2.8) with two terms
depending on E and ∂E/∂hx . When the expression for E obtained by summing
intermolecular potentials is substituted into (2.8), the two terms can cancel each other
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and Young’s equation (4.4) is recovered. This suggests that the current derivation of
Π is self-consistent.

Surface tension results from molecular interactions, as does disjoining pressure.
There is a question of how to separate the two effects. It has been suggested that
surface tension is not constant in the region where disjoining pressure dominates.
However, a non-uniform surface tension generates a Marangoni stress along the
surface (Levich 1962; Wong, Rumschitzki & Maldarelli 1999). In the absence of
surfactants, a Marangoni stress cannot be balanced and will always lead to fluid
motion. Thus, surface tension should remain constant near a static contact line. The
newly derived disjoining pressure does contain a curvature term: 2εH −2H 2

XHXX . This
term may be viewed as a form of excess capillary pressure introduced by the disjoining
pressure. This excess capillary pressure contains H −2 but is actually bounded as
H → 0 because the curvature HXX → 0 and HXXX → 0: 2εH 2

XHXX/H 2 → εHXXXX = 3C,
as determined by (4.6). For a drop, (C − ε) is the capillary pressure at the drop
centre. Thus, the excess capillary pressure is significant near the contact line. The new
disjoining pressure shows how the capillary pressure is modified without altering the
value of surface tension.

The new disjoining pressure consists of two terms: (1 − H 4
X)/H 3 and 2H 2

XHXX/H 2.
Hocking’s derivation has the first term, but not the second. The second term is
responsible for preventing a contact line from moving without slip. The evolution
equation (5.4) reduces to (5.5) at the contact line. Since HX → 1 and HXX → 0 as
H → 0, Hτ → 0 and the contact line cannot move. If the second term in the disjoining
pressure is dropped in (5.4), then as H → 0,

Hτ → 14ε

3
HXXX. (7.1)

Hence, if HXXX �= 0, then Hτ �= 0 and the contact line moves without slip. This is
responsible for Hocking’s regular solution of an inclined plate sliding into a pool of
liquid. He found a steady solution of the interfacial profile even without slip, but not
if the disjoining pressure is turned off. His conclusion disagrees with observations
from molecular dynamics simulations. Our rigorous derivation yields the second term
in the disjoining pressure, which describes correctly the behaviour of contact lines.

In § 3, the total intermolecular potential Φ between a liquid molecule and other solid,
liquid, and vapour molecules is found. The molecules interact through van der Waals
potentials with different strengths reflecting different materials. In addition, the final
expression contains the number densities of the three phases. Thus, it is possible, for
example, to replace the vapour with another liquid by substituting the appropriate van
der Waals potential and number density. Hence, the new disjoining pressure applies
not only to solid–liquid–vapour systems, but also to other combinations of phases.

The new disjoining pressure is derived assuming that molecules interact by van der
Waals forces. Although van der Waals forces are one of the most common types of
intermolecular force, their usage does have limitations. For example, only the negative
disjoining pressure will induce instability in a uniform film (§ 6), but all equilibrium
solutions of contacting films require positive disjoining pressure (§ 4). By the physical
argument in § 6, negative disjoining pressure always lead to instability in equilibrium
film profiles, and a liquid film must break in a finite time. However, after rupture, a
film with negative disjoining pressure cannot approach an equilibrium shape, at least
not in a form considered in this paper. It is unclear what geometry the film will finally
assume. This difficulty arises from using van der Waals forces and may be eliminated
if other intermolecular forces are incorporated. The energy minimization approach
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introduced in this work is sufficiently general that it can be applied to other forms of
intermolecular interactions. Indeed, this is one of the main purposes of this work, i.e.
to provide a rigorous framework for deriving disjoining-pressure isotherms.

8. Conclusions
We have derived rigorously a new form of disjoining pressure that depends on the

slope as well as the curvature of the film surface. The derivation starts by minimizing
the energy of a drop on a solid substrate. It leads to three equilibrium conditions: the
augmented Young–Laplace equation governing the drop profile and two boundary
conditions. The governing equation relates Π to an excess interaction energy E(h, hx).
By considering a liquid wedge on a solid substrate, the intermolecular potential Φ

between a liquid molecule and other molecules is found by pairwise summation of
van der Waals potentials. The excess energy E follows by integrating Φ . This gives
a new disjoining pressure. The boundary condition at the contact line reduces to
Young’s equation. This is the first time that Young’s equation has been derived in the
presence of disjoining pressure. Its recovery suggests that the derivation procedure is
valid. The new disjoining pressure does not allow movement of a contact line if slip
is not included. This agrees with results from molecular dynamics simulations. All
acceptable equilibrium film profiles have been calculated from the augmented Young–
Laplace equation. The negative disjoining pressure (attractive pressure) allows two
solutions: a uniform film and a symmetric valley that extends to two planes. For
positive disjoining pressure, acceptable solutions include a drop, a uniform film, a
uniform film growing to a constant-curvature surface, a wedge film, and a wedge
film growing to a constant-curvature surface. A uniform film with negative disjoining
pressure is unstable to long-wave disturbances. For positive disjoining pressure, a
uniform film is found to be linearly stable. The evolution of a film step has been
solved numerically by a finite-difference method. It shows that the zero-curvature
condition at the contact line is sufficient to maintain the contact angle.

We thank Peter Wayner, Joel Plawsky, and Clayton Radke for initiating our interest
in this work, and Jin Zhang for providing the results in figure 8. The derivation
procedure was first presented at the APS/DFD meeting in 2002 and at the ACS
National meeting in 2003, and comments from the audience were helpful. We also
benefited from referees’ questions and suggestions. This work was supported by
NASA (NAG3-2361 to H. W.) and NASA EPSCoR DGAP subprogram (NASA
(1999-00)-DGAP-02 to H. W.).

Appendix A. The total intermolecular potential Φ per unit volume
Consider a liquid wedge on a solid substrate as shown in figure 2. At a point in

the liquid wedge, the total intermolecular potential per unit volume is

Φ = nf (Φff + Φf s + Φfg), (A 1)

where nf is the number density of liquid, Φff is the intermolecular potential between
a liquid molecule M and the rest of the liquid wedge outside a sphere of radius D

surrounding M, Φf s is the intermolecular potential between M and the semi-infinite
solid substrate, and Φfg is that between M and the vapour. A cylindrical coordinate
system (r, θ, z) is defined for a point N , with z perpendicular to x and y (figure 2).
In terms of these coordinates, the liquid molecule M is located at (R, γ, 0). Thus, the
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distance MN between M and N can be found from

MN 2 = R2 + r2 + z2 − 2rR cos (θ − γ ). (A 2)

This gives

Φf s =

∫∫∫
Vs

nsφf s dV =

∫ 2π

π

∫ ∞

0

∫ ∞

−∞

−nsβf s

MN6
r dz dr dθ, (A 3)

where Vs is the solid volume, ns is the number density of the solid molecules, and φf s

is the van der Waals potential in (3.1). The integrals are evaluated as follows (Wu
2003):∫ ∞

−∞

dz

[R2 + r2 + z2 − 2rR cos (θ − γ )]3
=

3π

8[R2 + r2 − 2rR cos (θ − γ )]5/2
, (A 4)

∫ ∞

0

3πr dr

8[R2 + r2 − 2rR cos (θ − γ )]5/2
=

π

8[1 − cos (θ − γ )]2R3
, (A 5)

∫
π dθ

8[1 − cos (θ − γ )]2R3
=

−π

12R3 sin3(θ − γ )

[
1 + 3

2
cos (θ − γ ) − 1

2
cos3(θ − γ )

]
. (A 6)

An integration constant has been omitted in (A 6) since it plays no part in later
developments. Thus, (A 3) becomes

Φf s = −πnsβf s

6v3
1

, (A 7)

where v1 = R sin γ . Since the solid domain is unbounded in x, Φf s is independent of
x and depends only on v1, the height of M (figure 2).

The intermolecular potential between point M and the vapour region Vg can be
evaluated similarly:

Φfg =

∫∫∫
Vg

ngφfg dV =

∫ π

ψ

∫ ∞

0

∫ ∞

−∞

−ngβfg

MN6
r dz dr dθ =

−πngβfg

6

(
a1 − 1

v3
1

+
a2

v3
2

)
,

(A 8)

where v2 = R sin(ψ − γ ) is the normal distance between M and the wedge surface
(figure 2), and

a1 = 1
2

+ 3
4
cos γ − 1

4
cos3 γ, (A 9)

a2 = 1
2

+ 3
4
cos (ψ − γ ) − 1

4
cos3(ψ − γ ). (A 10)

To calculate Φff , it is easier to find the total and the complement, instead of direct
integration. The total is the potential between M and an infinite body of liquid V−D

outside a sphere of radius D surrounding M:

Φ−D =

∫∫∫
V−D

nf φff dV =

∫ ∞

D

−nf βff

r6
(4πr2) dr = −4πnf βff

3D3
. (A 11)

The integration domain V−D is the sum of the liquid domain Vf and the
complementary domain Vs + Vg . Thus, the total potential is similarly the sum of the
liquid potential Φff and the complementary potential ΦC , which is the intermolecular
potential between M and the solid and vapour regions when these regions are filled
with liquid:

ΦC = −πnf βff

6v3
1

− πnf βff

6

(
a1 − 1

v3
1

+
a2

v3
2

)
, (A 12)
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where the results for Φf s and Φfg have been used with nsβf s and ngβfg replaced by
nf βff . Thus,

Φff = Φ−D − ΦC = −4πnf βff

3D3
+

πnf βff

6

(
a1

v3
1

+
a2

v3
2

)
. (A 13)

This solution is symmetric about the bisector of the wedge, as expected.
The total intermolecular potential per unit volume at point M in the liquid is

Φ = nf (Φff + Φf s + Φfg) =
πn2

f βff

6

[
a1(1 − ρ) + ρ − λ

v3
1

+
a2(1 − ρ)

v3
2

]
, (A 14)

λ =
nsβf s

nf βff

, (A 15)

ρ =
ngβfg

nf βff

, (A 16)

where the potential has been increased by a constant value of 4πn2
f βff /3D3. The

potential Φ holds for wedge angle ψ < 90◦.

Appendix B. The excess interaction energy E per unit area
From (3.4),

E =

∫ h

D

(Φ − Φ∞) dy. (B 1)

The potential Φ is the total intermolecular potential per unit volume at point M

and Φ∞ is its value far from the substrate (figure 2). The difference depends only on
the position of point M . Thus, the integration over y means summing the potential
difference as M moves vertically from y = D to h, where D is the cut-off distance
in the van der Waals potential. The integration starts at y = D instead of y =0
to avoid unbounded interactions at the liquid–solid interface. The singularity arises
because the cut-off sphere surrounding M is assumed to contain only liquid molecules
(Appendix A). If M is at the liquid–solid interface, it interacts with adjacent solid
molecules, resulting in infinite energy that cannot be prevented by the cut-off liquid
sphere. Thus, an additional truncation is needed at the liquid–solid interface. At
the liquid–vapour interface, the infinite self-interactions have been eliminated by
subtracting Φ∞ from Φ , and a cut-off is not required.

Substitution of Φ in (3.2) and Φ∞ in (3.3) into (B 1) yields

E =
πn2

f βff

6

[∫ h

D

a1 (1 − ρ) + ρ − λ

v3
1

dy + (1 − ρ)

∫ h

D

(a2 − 1)

v3
2

dy

]
, (B 2)

As the position of M changes, the wedge angle ψ stays fixed, but v1, v2, and γ will
vary (figure 2). From geometry,

v1 = y, (B 3)

v2 = (h − y) cos ψ, (B 4)

cos ψ =
(
1 + h2

x

)−1/2
, (B 5)

cos γ =
h(

h2 + h2
xy

2
)1/2

, (B 6)

cos (ψ − γ ) =

[
1 − h2

x(h − y)2(
1 + h2

x

)(
h2 + h2

xy
2
)
]1/2

, (B 7)
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These expressions are substituted into the integrands in (B 2):∫ h

D

a1(1 − ρ) + ρ − λ

v3
1

dy =

(
1

D2
− 1

h2

) (
1 + ρ − 2λ

4

)

+
1 − ρ

4

[
h

D2
(
h2 + h2

xD
2
)1/2

− 1

h2
(
1 + h2

x

)1/2

]
, (B 8)

∫ h

D

(a2 − 1)

v3
2

dy =

(
1 + h2

x

)3/2

4(h − D)2
−

(
1 + 2h2

x

)
h2

x

8h2
(
1 +h2

x

)1/2
− (2h − D)D2h4

x + (h + D)h2h2
x + h3

4(h − D)2h2
[
h2 + D2h2

x

]1/2
.

(B 9)

The above results are exact. In the limit D/h → 0, the above integrals simplify:

E = −
πn2

f βff

4h2

{
(1 − λ)

3
+

(1 − ρ)h2
x

4

[
1 −

(
1 + h2

x

)−1/2
]}

+
πn2

f βff (1 − λ)

12D2
. (B 10)

The last term is constant and can be eliminated since E is a potential.

Appendix C. Asymptotic solution of the valley film profile for C = 0

Equation (4.17),

Hζζ −
(

1 − ε2H 4
ζ + 2ε2HH 2

ζ Hζζ

H 3

)
= 0, (C 1a)

is subject to the symmetry condition at ζ = 0:

H = 1, Hζ = 0. (C 1b, c)

In the limit ε → 0, the film height can be expanded in an asymptotic series of ε2:

H (ζ ) = H0(ζ ) + ε2H1(ζ ) + · · · . (C 2)

Substitution into (C 1) yields

H0ζ ζ − 1

H 3
0

+ ε2

(
H1ζ ζ +

3H1

H 4
0

−
−H 4

0ζ + 2H0H
2
0ζH0ζ ζ

H 3
0

)
= 0. (C 3a)

At ζ = 0,

H0 = 1, H1 = 0, H0ζ = H1ζ = 0. (C 3b–d)

An analytic solution is found for H0:

H0 = (ζ 2 + 1)1/2. (C 4)

As ζ → ∞, H0ζ → 1. Thus, the leading-order solution captures the asymptotic value
of the slope in (4.16).

The first-order expansion H1 obeys

H1ζ ζ +
3H1

(ζ 2 + 1)2
= − ζ 2(ζ 2 − 2)

(ζ 2 + 1)7/2
, (C 5)

and at ζ = 0, H1 = H1ζ = 0. Equation (C 5) admits an analytic solution:

H1 =
ζ

4(ζ 2 + 1)3/2
[(ζ 2 + 1) tan−1(ζ ) − ζ ]. (C 6)
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As ζ → ∞, H1 → π/8 − 1/2ζ + O(ζ −2). The asymptotic solution H = H0 + ε2H1 is
plotted in figure 3 for ε = 0.5.

Appendix D. Drop profile by matched asymptotic expansions
The profile of a drop with positive disjoining pressure obeys (4.6):

HXX + ε

(
1 − H 4

X + 2HH 2
XHXX

H 3

)
= C. (D 1)

The disjoining pressure demands that near the contact line as H → 0, HX → 1 and
HXX → 0. Setting ε = 0 in (D 1) leaves a second-order differential equation that
cannot satisfy all the boundary conditions. Thus, ε → 0 is singular and an inner
region exists near the contact line. In the inner region, the capillary pressure balances
the disjoining pressure to yield δH ∼ δX ∼ ε1/2, where δHand δX are the length
scales of H and X. This suggests that the outer variables should be expanded in series
of ε1/2:

H = H0 + ε1/2H1 + (ε ln ε)H2 + εH3 + · · · , (D 2a)

C = C0 + ε1/2C1 + (ε ln ε)C2 + εC3 + · · · , (D 2b)

X0 = X00 + ε1/2X01 + (ε ln ε)X02 + εX03 + · · · , (D 2c)

where X0 is the contact-line position, and the ε ln ε scale is suggested by the inner
solution. Substitution into (D1) leads to

H0XX + ε1/2H1XX + (ε ln ε)H2XX + ε

(
H3XX +

1 − H 4
0X + 2H0H

2
0XH0XX

H 3
0

)
= C0 + ε1/2C1 + (ε ln ε)C2 + εC3. (D 3)

At X = 0,

H0 + ε1/2H1 + (ε ln ε)H2 + εH3 = 1, (D 4a)

H0X + ε1/2H1X + (ε ln ε)H2X + εH3X = 0. (D 4b)

The leading-order solution is

H0 = 1
2
C0X

2 + 1. (D 5)

The leading-order pressure jump C0 can be found by matching.
In the inner region, a set of variables is defined:

η =
H

ε1/2
, (D 6)

ξ =
X − X0

ε1/2
. (D 7)

Equation (D 1) becomes

ηξξ +
1 − η4

ξ + 2ηη2
ξ ηξξ

η3
= ε1/2C. (D 8)

At the contact line as ξ → 0, (4.2) requires

η → 0, ηξ → −1, ηξξ → 0, ηξξξ → 0. (D 9)
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Although (D 8) is only second order, four boundary conditions are needed owing to
the singularity at η = 0.

The inner variable is expanded in series of ε1/2:

η = η0 + ε1/2η1 + εη2 + · · · . (D 10)

Substitution into (D 8) yields

η0ξξ +
1 − η4

0ξ + 2η0η
2
0ξ η0ξξ

η3
0

+ ε1/2

[(
1 +

2η2
0ξ

η2
0

)
η1ξξ +

(
η0ξξ −

η2
0ξ

η0

)
4η0ξ η1ξ

η2
0

−
(

4η2
0ξ η0ξξ +

3
(
1 − η4

0ξ

)
η0

)
η1

η3
0

]
+ ε

[(
1 +

2η2
0ξ

η2
0

)
η2ξξ +

(
η0ξξ −

η2
0ξ

η0

)
4η0ξ η2ξ

η2
0

−
(

4η2
0ξ η0ξξ +

3
(
1 − η4

0ξ

)
η0

)
η2

η3
0

+

(
η1ξ − η0ξ η1

η0

)
4η0ξ η1ξξ

η2
0

+

(
η0ξξ −

3η2
0ξ

η0

)
2η2

1ξ

η2
0

+

(
3η2

0ξ

η0

− 2η0ξξ

)
4η1η0ξ η1ξ

η3
0

+
6
(
1 − η4

0ξ + η0η
2
0ξ η0ξξ

)
η2

1

η5
0

]
= ε1/2C0 + εC1. (D 11)

To leading order,

η0ξξ +
1 − η4

0ξ + 2η0η
2
0ξ η0ξξ

η3
0

= 0. (D 12)

This equation is the same as (4.6) with C = 0 and ε = 1. From § 4.1, the only solution
that contacts the substrate is

η0 = −ξ. (D 13)

This is to be matched to the outer solution.
Inner and outer expansions are matched by taking the outer limit of the inner

expansions and the inner limit of the outer expansions:

lim
X→X0

H = lim
ξ→−∞

ε1/2η. (D 14)

In the limit X → X0 = X00,

H0 → 1
2
C0(X − X0)

2 + C0X00(X − X0) + 1
2
C0X

2
00 + 1. (D 15)

In the limit ξ → −∞,

ε1/2η0 → −(X − X0). (D 16)

Matching (D15) and (D 16) yields

X00 = 2, (D 17)

C0 = − 1
2
. (D 18)

This completes the zero-order expansions.
The first-order outer solution is

H1 = 1
2
C1X

2, (D 19)
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where C1 has to be found by matching. The first-order inner film height obeys

η1ξξ − 4

ξ (ξ 2 + 2)
η1ξ =

−ξ 2

2(ξ 2 + 2)
. (D 20)

As ξ → 0, (D 9) shows that

η1, η1ξ , η1ξξ , η1ξξξ → 0. (D 21)

An analytical solution is found:

η1 = − 1
4
ξ 2 + 1

2
ln

(
ξ 2 + 2

2

)
. (D 22)

The matching principle (D 14) is invoked again. In the limit X → X0 = X00 + ε1/2X01,

H0 + ε1/2H1 → − 1
4
(X − X0)

2 − (X − X0)

+ ε1/2
[

1
2
C1(X − X0)

2 +
(
2C1 − 1

2
X01

)
(X − X0) + 2C1 − X01

]
. (D 23)

In the limit ξ → −∞,

ε1/2η0 + εη1 → − 1
4
(X − X0)

2 − (X − X0). (D 24)

Matching (D 23) and (D 24) yields

X01 = C1 = 0. (D 25)

This completes the first-order expansions.
At the ε ln ε order, the outer expansion obeys

H2XX = C2. (D 26)

Its solution that satisfies the boundary conditions in (D 4) is

H2 = 1
2
C2X

2. (D 27)

This needs to be matched together with the order-ε outer expansion, which solves

H3XX = C3 − 16

(X2 − 4)2
. (D 28)

By imposing the conditions H3 = H3X = 0 at X = 0, we find

H3 =
1

2
C3X

2 +
X

2
ln

(
2 − X

2 + X

)
. (D 29)

The inner second-order expansion obeys

η2ξξ − 4

ξ (ξ 2 + 2)
η2ξ =

ξ 3[ξ 4 + 10ξ 2 − 4(ξ 2 + 2) ln(ξ 2/2 + 1)]

2(ξ 2 + 2)4
. (D 30)

As ξ → 0, (D 9) shows that

η2, η2ξ , η2ξξ , η2ξξξ → 0. (D 31)

An analytical solution is found:

η2 =
ξ 3 ln(1 + ξ 2/2)

4(ξ 2 + 2)
− ξ (6ξ 4 + 25ξ 2 + 30)

8(ξ 2 + 2)2
+

15
√

2

16
tan−1

(
ξ√
2

)
. (D 32)
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In the limit X → X0 = X00 + (ε ln ε)X02 + εX03,

H0 + ε1/2H1 + (ε ln ε)H2 + εH3 → − 1
4
(X − X0)

2 − (X − X0)

+ (ε ln ε)
[

1
2
C2(X − X0)

2 + (X − X0)
(
2C2 − 1

2
X02

)
+ 2C2 − X02

]
+ ε

[
ln(X0 − X) + 1

2
(X − X0) ln(X0 − X) + (X − X0)

2
(

1
2
C3 − 3

32

)
+ (X − X0)

(
2C3 − 1

2
X03 − 1

4
− ln 2

)
+ 2C3 − X03 − 2 ln 2

]
. (D 33)

In the limit ξ → −∞,

ε1/2η0 + εη1 + ε3/2η2 → − 1
4
(X − X0)

2 − (X − X0) + (ε ln ε)
[
− 1

4
(X − X0) − 1

2

]
+ ε

[
ln(X0 − X) + 1

2
(X − X0) ln(X0 − X) − 1

4
(3 + ln 2)(X − X0) − 1

2
ln 2

]
. (D 34)

Matching (D33) and (D 34) yields

C2 = 0, (D 35)

X02 = 1
2
, (D 36)

C3 = − 1
2
, (D 37)

X03 = −1 − 3
2
ln 2. (D 38)

This completes the third-order expansions.

Appendix E. An asymptotic solution of the wedge film
The wedge film that starts at the contact line and grows to a constant-curvature

surface (C = 1) obeys (4.37). Near the contact line at X = 0, H → 0, HX → 1, HXX → 0,
and HXXX → 0. The last two conditions cannot be satisfied if ε = 0. Thus, an inner
region exists near the contact line in which the capillary pressure balances the
disjoining pressure to yield the length scales of H and X as δH ∼ δX ∼ ε1/2. Hence,
the film height is expanded in a series of ε1/2 as in (4.39). Substitution of the series
into (4.37) leads to

H0XX + ε1/2H1XX + (ε ln ε)H2XX + ε

(
H3XX +

1 − H 4
0X + 2H0H

2
0XH0XX

H 3
0

)
= 1. (E 1)

The leading-order solution is

H0 = 1
2
X2 + k1X + k2. (E 2)

The integration constants can be found by matching.
The film height in the inner region obeys

ηξξ +
1 − η4

ξ + 2ηη2
ξ ηξξ

η3
= ε1/2, (E 3)

obtained by substituting the inner variables in (4.40) into (4.37). At the contact line
as ξ → 0, (4.2) requires

η → 0, ηξ → 1, ηξξ → 0, ηξξξ → 0. (E 4)

The inner expansion in (4.41) is substituted into (E 3) to yield an equation the same
as (D11) except that the right-hand side is ε1/2. The leading-order expansion obeys
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(D 12) and its solution subject to (E 4) is

η0 = ξ. (E 5)

This is to be matched to the outer solution.
Inner and outer expansions are matched by taking the appropriate limits:

lim
X→0

H = lim
ξ→∞

ε1/2η. (E 6)

In the limit X → 0,

H0 → 1
2
X2 + k1X + k2. (E 7)

In the limit ξ → ∞,

ε1/2η0 → X. (E 8)

Matching (E 7) and (E 8) yields

k1 = 1, (E 9)

k2 = 0. (E 10)

This completes the zero-order expansions.
The first-order outer solution is

H1 = k3X + k4. (E 11)

The first-order inner film height obeys

η1ξξ − 4

ξ (ξ 2 + 2)
η1ξ =

ξ 2

ξ 2 + 2
. (E 12)

As ξ → 0, (E 4) shows that

η1, η1ξ , η1ξξ , η1ξξξ → 0. (E 13)

An analytical solution is found:

η1 = 1
2
ξ 2 − ln

(
ξ 2 + 2

2

)
. (E 14)

The matching principle (E 6) is invoked again. In the limit X → 0,

H0 + ε1/2H1 → 1
2
X2 + X + ε1/2(k3X + k4). (E 15)

In the limit ξ → ∞,

ε1/2η0 + εη1 → 1
2
X2 + X + ε ln ε − ε(2 ln X − ln 2). (E 16)

Matching (E 15) and (E 16) yields

k3 = k4 = 0. (E 17)

This completes the first-order expansions.
At the ε ln ε order, the outer expansion obeys

H2XX = 0. (E 18)

Its solution is

H2 = k5X + k6. (E 19)
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This needs to be matched together with the order-ε outer expansion, which solves

H3XX =
8

X2(X + 2)2
. (E 20)

We find

H3 = 2(X + 1) ln

(
X + 2

X

)
+ k7X + k8. (E 21)

The inner second-order expansion obeys

η2ξξ − 4

ξ (ξ 2 + 2)
η2ξ = −2ξ 3[ξ 4 + 10ξ 2 − 4(ξ 2 + 2) ln(ξ 2/2 + 1)]

(ξ 2 + 2)4
. (E 22)

This equation with the boundary conditions derived from (E4) that, as ξ → 0,

η2, η2ξ , η2ξξ , η2ξξξ → 0, (E 23)

has an analytical solution:

η2 =
ξ (6ξ 4 + 25ξ 2 + 30)

2(ξ 2 + 2)2
− ξ 3 ln(ξ 2/2 + 1)

ξ 2 + 2
− 15

√
2

4
tan−1

(
ξ√
2

)
. (E 24)

In the limit X → 0,

H0 + ε1/2H1 + (ε ln ε)H2 + εH3 → 1
2
X2 + X + (ε ln ε)(k5X + k6)

+ ε[2(X + 1)(ln 2 − lnX) + k7X + k8]. (E 25)

In the limit ξ → ∞,

ε1/2η0 + εη1 + ε3/2η2 → 1
2
X2 + X + (ε ln ε)(X + 1)

+ ε[(3 + ln 2)X − 2(X + 1) ln X + ln 2]. (E 26)

Matching (E 25) and (E 26) yields

k5 = 1, (E 27)

k6 = 1, (E 28)

k7 = 3 − ln 2, (E 29)

k8 = − ln 2. (E 30)

This completes the third-order expansions.
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